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Abstract

Classification with rejection (CwR) refrains from making a prediction to avoid crit-1

ical misclassification when encountering test samples that are difficult to classify.2

Though previous methods for CwR have been provided with theoretical guarantees,3

they are only compatible with certain loss functions, making them not flexible4

enough when the loss needs to be changed with the dataset in practice. In this paper,5

we derive a novel formulation for CwR that can be equipped with arbitrary loss6

functions while maintaining the theoretical guarantees. First, we show that K-class7

CwR is equivalent to a (K+1)-class classification problem on the original data8

distribution with an augmented class, and propose an empirical risk minimization9

formulation to solve this problem with an estimation error bound. Then, we find a10

necessary and sufficient condition for the learning consistency of the surrogates con-11

structed on our proposed formulation equipped with any classification-calibrated12

multi-class losses, where consistency means the surrogate risk minimization im-13

plies the target risk minimization for CwR. Finally, experiments on benchmark14

datasets validate the effectiveness of our proposed method.15

1 Introduction16

In risk-sensitive multi-class classification applications (e.g., medical diagnosis, healthcare, au-17

tonomous driving, and product inspections [12, 21, 43]), misclassification can cause serious or18

even fatal consequences. To alleviate this issue, many studies have been conducted on classification19

with rejection (CwR) [10, 6, 61, 12, 13, 15, 21, 51, 47, 43, 8], which can abstain from making an20

unsure prediction to prevent such critical misclassification.21

Most of the previous studies follow the framework that provides the reject option with a pre-defined22

cost c which is lower than the misclassification cost 1. Given cost c, the problem is further formulated23

as a risk minimization problem that aims to minimize the expectation of the zero-one-c loss, i.e., the24

zero-one-c risk. With the risk minimization process, the obtained classifier can balance the cost of25

rejection and prediction by choosing to incur a rejection cost c if the misclassification risk is high.26

Due to the discontinuous nature of the zero-one-c loss, recent works focused on finding its continuous27

surrogates to make the optimization problem tractable. A basic requirement for surrogate losses28

is the consistency [63, 7, 53, 46], i.e., the surrogate risk minimization implies the zero-one-c risk29

minimization. Moreover, compared with the traditional K-class classification task where decisions30

are normally made from the index of the maximum coordinate of a K-dimensional scoring function,31

the design of decision criteria in the CwR task is more elusive due to the existence of a reject option.32
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Figure 1: Overview of the construction of consistent surrogates for classification with rejection in this work.

By adopting different classification and rejection criteria, various surrogates of the zero-one-c loss33

have been proposed with consistency analyses [6, 61, 12, 13, 47, 43, 8].34

Classical studies focused on developing confidence-based methods[6, 61, 47, 43], which use the35

outputs of classifiers as confidence values and set a real-valued threshold as the rejection rule.36

Representative methods [61, 43] used surrogates that depend on class-posterior possibility estimation37

(CPE) [49, 56], which is challenging when using deep models [24]. Though some of them [6, 47, 34,38

23] could avoid CPE, most of them applied the modification of non-differentiable hinge/ramp-like39

surrogates, and their performance was only validated with linear models.40

To avoid the use of the confidence threshold, Cortes et al. [12] provided an upper bound of the zero-41

one-c loss as the surrogate that allows the use of a separated rejector and can be trained simultaneously42

with the classifier, which is regarded as classifier-rejector methods. Though these methods achieved43

state-of-the-art performance in binary classification scenarios, they only provided a consistency44

guarantee for hinge-like and exponential losses and cannot be directly generalized to the multi-class45

scenario as shown in Ni et al. [43]. Charoenphakdee et al. [8] showed that K-class CwR can be46

decomposed into K binary cost-sensitive classification problems [16, 50, 11] and proposed a family47

of surrogates are the ensembles of arbitrary binary classification losses, which can avoid CPE and the48

use of confidence threshold with properly chosen losses when the cost function is constant. Mozannar49

and Sontag [40] provided a modified version of the cross entropy loss as the surrogate for the task of50

learning to defer [40, 41] that can also be used in CwR, while its optimal solution still relies on CPE.51

In summary, previous works only took limited types of losses into consideration, and there lacks a52

theoretically grounded framework that can cover all the surrogates used in multi-class classification.53

In this paper, we propose a novel framework for CwR that allows the use of arbitrary surrogate losses54

used in traditional multi-class classification as long as they are classification-calibrated, including55

but not limited to the well-known cross entropy loss, mean absolute error, focal loss [32, 9], and the56

pairwise/one-versus-all generalizations of binary margin losses [63]. Thanks to the flexible choices of57

losses, we be free of the restricted analyses on the consistency of certain surrogates. An overview of58

our framework is shown in Figure 1. We summarize the main contributions of this work as follows:59

• We disclose the equivalence between K-class CwR and a (K+1)-class classification problem60

on the original data distribution with an augmented class, by showing the equality between their61

classification risks.62

• We propose a formulation of surrogates for ℓ01c that can recover the surrogate risk of a (K+1)-63

class classification task only with the K-class training distribution, and derive an estimation error64

bound for its empirical risk minimization.65

• We find a necessary and sufficient condition for the consistency of the proposed family of surrogates66

w.r.t. the zero-one-c loss that allows the use of any calibrated multi-class surrogates.67

• We for the first time provide an analysis on the calibration of the generalized cross entropy loss68

[64] that benefits from both the cross entropy loss and mean absolute error, and experimentally69

demonstrate that it is suitable for our proposed framework.70

2 Preliminaries71

In this section, we provide preliminary knowledge of CwR and calibrated surrogate losses, and72

discuss the consistency in CwR.73
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2.1 Classification with Rejection74

The problem setting of CwR is based on the cost-based framework [10]. Let us denote by X the
feature space, Y = {1, 2, . . . ,K} the label space , and Y® = {1, 2, . . . ,K,®} the label space with a
reject option. We are given instance-label pairs {(xi, yi)}ni=1 independently and identically drawn
from an underlying distribution with probability density p(x, y). The goal of CwR is to train a
classifier f : X → Y® that can abstain from making a decision, where ® denotes the reject option.
The evaluation metric of this task is the zero-one-c loss ℓ01c, which can be expressed as a variant of
the traditional zero-one loss ℓ01(f(x), y) = [[f(x) ̸= y]]:

ℓ01c(f(x), y) =

{
c, f(x) = ®,

[[f(x) ̸= y]], f(x) ∈ {1, 2, . . . , k},

where [[·]] is the Iverson bracket notation as suggested by Knuth [28] and the cost c can be further75

extended to an instance-dependent function c(x). Our goal is to train a classifier that can minimize76

the expectation of ℓ01c over the data distribution:77

R01c(f) = Ep(x,y)[ℓ01c(f(x), y)]. (1)

Let us denote by f∗ = argminfR01c(f) the Bayes optimal solution and η(x) = {p(y|x)}Ky=1 the78

posterior probabilities. When evaluated by ℓ01c, a classifier receives a standard classification error in79

{0, 1} if it makes a prediction and a cost of c if it does not make a prediction (i.e., chooses the reject80

option). Intuitively, an optimal solution f∗ should balance the possibility of misclassification and the81

rejection cost c. This explanation is theoretically justified by Chow’s rule [10]:82

Definition 1. (Chow’s Rule) A classifier f : X → Y® is the optimal solution of (1) if and only if it
meets the following condition almost surely:

f(x) =

{
®, maxy ηy(x) ≤ 1− c,

argmaxy ηy(x), else.

Chow’s rule shows that the optimal solution should refrain from making a decision if the most83

competent prediction of an example is still not confident enough given a rejection cost c.84

2.2 Calibrated Surrogate Losses85

Most classification problems can be formalized as the minimization of the target risk, which is the86

expectation of a target loss. Then empirical risk minimization (ERM) is conducted to obtain models87

with performance guarantees. However, most of the target losses are discontinuous, e.g., the zero-one88

loss in multi-class classification and the Hamming/ranking loss in multi-label classification [19].89

Therefore, directly optimizing them is usually difficult and even NP-hard [17].90

In order to optimize the target risk efficiently, surrogate risk minimization is preferred that minimizing91

the expectation of a continuous surrogate loss instead, e.g., the hinge loss in binary classification92

and the cross entropy loss in multi-class classification. For the statistical consistency of learning,93

calibration [52] is considered as a basic requirement for surrogate losses, which is a pointwise version94

of consistency and means that the minimization of the surrogate loss yields that of the target loss for95

each possible sample. A commonly adopted definition of the calibration of surrogates in multi-class96

classification is given as follows:97

Definition 2. (ℓ01-Calibration [7, 53, 46]) For a K-class classification problem with target loss ℓ01,
we say Φ : RK × Y → R+ is ℓ01-calibrated if for any p ∈ ∆K :

inf
u∈RK ,u̸∈argminu pTL01(u)

pTΦ(u) > inf
u∈RK

pTΦ(u),

where Φ(u) = {Φ(u, y)}Ky=1, L01(u) = {ℓ01(argmaxy′∈Yuy′ , y)}Ky=1.98

The definition of ℓ01-calibration requires that a surrogate loss should be able to distinguish between99

optimal solutions and non-optimal ones w.r.t. any potential posterior distribution p. This property100
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Table 1: Comparisons between our proposed method and previous works of multi-class classification with
rejection. Since our method is induced from a (K+1)-class classification problem, we can render a consistent
learning guarantee with arbitrary surrogate losses that are calibrated w.r.t. the zero-one loss. Thanks to the
abundant choices of losses, our proposed method can avoid CPE and the use of confidence thresholds.

Method CPE-Free Instance-Dependent Cost Confidence Threshold-Free Arbitrary Losses

[47] ! ! # #

[43] # ! # #

[40] # ! ! #

[8] ! # ! #

Proposed ! ! ! !

is shown to be a necessary and sufficient condition for the statistical consistency of surrogate risk101

minimization, and fruitful research on the verification of ℓ01-calibrated surrogates has been conducted102

[7, 63, 53, 46, 45, 18].103

Besides multi-class classification, the calibration of surrogate losses also has been studied in various104

aspects of statistical learning, including but not limited to, multi-label classification [19, 62, 29, 57],105

AUC optimization [20, 38], general linear-fractional utility maximization [3], cost-sensitive learning106

[11, 50], top-K classification [31, 60], and adversarially robust classification [4, 2, 1].107

2.3 Consistency in Classification with Rejection108

In the field of CwR, we are also interested in the consistency of surrogate losses. Let C ⊂ Rd where109

d ∈ N and Φ : C × Y → R+ is a surrogate loss, the consistency is defined as follows:110

Definition 3. (ℓ01c-Consistency) A surrogate loss Φ : C × Y → R+ is ℓ01c-consistent if there111

exists a function φ : C → Y® for all probability distributions and all the sequences of functions112

{gi}i∈N : X → C:113

RΦ(gi) → R∗
Φ ⇒ R01c(φ ◦ gi) → R∗

01c, (2)

where Rϕ(g) = Ep(x,y)[Φ(g(x), y)], R∗
Φ = inf

g:X→C
RΦ(g), and R∗

01c = inf
f :X→Y®

R01c(f).114

This definition is inspired by the problem of general multi-class classification [46]. For an ℓ01c-115

consistent surrogate loss Φ, we can safely minimize the surrogate risk RΦ instead while remaining116

the consistency guarantee of R01c.117

To ensure the consistency of Φ, it is routine to discuss the calibration of surrogate losses. However,118

unlike the classical multi-class classification problem, where φ is usually an argmax operator, the119

design of φ in the field of CwR can be quite complicated and hard to be unified, which makes it120

difficult to directly conduct calibration analysis on Φ. The flexibility of φ also limits the discussions121

to specific types of surrogate losses. In Ramaswamy et al. [47], the authors considered the multi-class122

extensions of the hinge-loss with a confidence threshold. Ni et al. [43] indicated that the confidence-123

based method is indispensable and only focuses on class probability estimation via surrogate risk124

minimization. Both of Mozannar and Sontag [40] and Charoenphakdee et al. [8] gave surrogate125

losses for the zero-one-c loss that does not depend on the accurate estimation of the class probability,126

while Mozannar and Sontag [40] focused on a variant of the cross entropy loss and Charoenphakdee127

et al. [8] constructed calibrated surrogate losses with the ensemble of K calibrated losses for binary128

classification.129

In this paper, instead of directly discussing the calibration of surrogate Φ, we show that there is an130

equivalence between classical multi-class classification and CwR. Based on this equivalence, we131

show that it is sufficient for Φ to be ℓ01c-consistent by letting it be a simple variant of any calibrated132

surrogate loss w.r.t. the traditional zero-one loss ℓ01. The comparison of the proposed method and133

related works is shown in Table 1.134
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3 Equivalence between Classification with Rejection and Ordinary135

Classification136

In this section, we first show that the risk R01c(f) can be formalized as a (K+1)-class classification137

problem, and show that we can obtain ℓ01c-consistent surrogates with a variant of any calibrated138

surrogate w.r.t. ℓ01, which enables the use of C ⊂ RK+1 and φ(·)=argmax(·) as in the traditional139

multi-class classification tasks. We also show that such equivalence also holds when the cost c140

depends on sample x. The proof of the conclusions in this section can be found in Appendix A.141

We start by considering the following distribution D®
c over X × Y® with probability density p̃(x, ỹ):142

Definition 4. (Self-Augmented Distribution) A distribution D®
c is called a c-self-augmented distribu-

tion w.r.t. D if its probability density meets the following conditions:

p̃(x, ỹ) =

{
p(x,y)
2−c , ỹ ∈ {1, 2, . . . ,K},

(1−c)p(x)
2−c , ỹ = ®.

It can be seen that distribution D®
c shares the same marginal density of x as the original distribution143

D while D®
c has an augmented class ® with class possibility determined by the rejection cost c.144

Based on the connection between D®
c and D, we can further explore the relation between the two145

tasks: classification on D®
c and CwR on D.146

Theorem 1. For any classifier f : X → Y®, the following equation holds:

R01c(f)−R∗
01c = (2− c)

(
R̃01(f)− R̃∗

01

)
,

where R̃01(f) = Ep̃(x,ỹ)[ℓ01(f(x), ỹ)] and R̃∗
01 = inff :X→Y® R̃01(f).147

This equation reveals the equivalence between the two tasks in a straightforward manner. Since148

the multiplication of the classification risk on D®
c with a positive constant is equal to R01c(f), the149

minimization of R̃01(f) immediately yields the minimization of R01c(f) and vice versa. Furthermore,150

according to the linear correlation between R̃01(f) and R01c(f), we can directly quantify the excess151

error R01c(f) − R∗
01c by bounding R̃01(f) − R̃c

01, which is an easier work thanks to the existing152

research of multi-class classification. In conclusion, risk minimization with R̃01(f) can also give a153

classifier with a rejection option with the optimality guarantee, and then we can consider a surrogate154

risk minimization problem for multi-class classification instead of CwR.155

When the cost c(x) is an instance-dependent function, we show that such equivalence still holds with a156

minor modification. Considering the reweighted zero-one loss: ℓ̄01(f(x), y) = (2−c(x))[[f(x) ̸= y]]157

and its expectation R̄01(f) on D®
c , we have the following conclusion:158

Corollary 1. For any classifier f : X → Y®, the following inequalities holds:

R̄01(f)− R̄∗
01 = R01c(f)−R∗

01c.

It is obvious that Lemma 1 is a special case of Lemma 1 with constant cost functions. Though here159

we consider a reweighted classification task, the calibration result of multi-class surrogate losses can160

still be applied without any modification since the minimization of R̄01(f) can be seen as ordinary161

classification risk minimization with a slightly different marginal density p′(x), which does not affect162

the calibration result since the class-posterior possibilities remain unchanged. All the conclusions in163

the rest of this paper can be extended to the scenario of instance-dependent cost and we provide them164

in Appendix G.165

4 ℓ01c-Consistent Surrogates with Arbitrary ℓ01-Calibrated Losses166

According to the discussions in Section 3, CwR can be safely replaced by multi-class classification167

on a special distribution D®
c . Following the practice of surrogate risk minimization in multi-class168

classification, we can replace the zero-one loss ℓ01 with a surrogate risk Φ : RK+1×Y ∪{K+1} →169
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R+ and minimizing the surrogate risk with a score-based classifier g : X → RK+1 instead, which is170

defined as follows:171

R̃Φ(g) = Ep̃(x,ỹ)[Φ(g(x), t(ỹ))], (3)

where t(ỹ) = K + 1 if ỹ = ® and t(ỹ) = ỹ otherwise. (3) is a typical formulation of the multi-
class classification risk and we can asymptotically minimize it following the ERM framework [54].
After the risk minimization process, the prediction is generated with the following link function
φ : RK+1 → Y®:

φ(u) =


®, argmax

y∈Y∪{K+1}
uy(x) = K + 1,

argmax
y∈Y∪{K+1}

uy(x), else.

With a properly chosen surrogate Φ, the minimization of R̃Φ(g) can lead to that of R̃01(φ(g)), which172

indicates the minimization of R01c(φg) according to Lemmas 1 and 1. The theory of how to find173

such surrogates has been thoroughly studied in the field of the classification-calibration of multi-class174

surrogates [63, 53, 46].175

However, we do not have direct access toward D®
c though it is closely related to the available data176

distribution D. In this section, we propose a family of surrogate losses based on the conclusions177

in the previous section, which allows the use of any multi-class classification surrogates. With this178

formulation of surrogates, we can recover the classification risk of R̃Φ(g) without access to D®
c by179

taking its expectation in D. Based on the loss formulation, we also provide the estimation error bound180

to show the validity of ERM.181

4.1 Formulation of Surrogates182

Here, we begin with the definition of a family of surrogates for the zero-one-c loss, and then show how183

it can relate D and D®
c . With any multi-class classification loss Φ, we have the following formulation184

of surrogate losses for ℓ01c:185

Definition 5. Given a pre-defined rejection cost c, we have the following formulation of surrogate186

LΦ
c : RK+1 × Y → R+ for CwR:187

LΦ
c (u, y) = Φ(u, y) + (1− c)Φ(u,K + 1), (4)

where Φ : RK+1 × Y ∪ {K + 1} → R+ and u ∈ RK+1.188

The proposed surrogate loss is the linear combination of a (K+1) dimensional multi-class classifica-189

tion loss with coefficient determined by the predefined cost c. It can also be learned from Appendix190

A.2 of Charoenphakdee et al. [8] that when Φ is the softmax cross entropy loss, (4) is equivalent to191

Mozannar and Sontag [40]. The following theorem reveals the connection between R̃Φ(g) and the192

expectation of LΦ
c on D:193

Theorem 2. For any g : X → RK+1 and RLΦ
c
(g) = Ep(x,y)[L

Φ
c (g(x), y)]:194

RLΦ
c
(g) = (2− c)R̃Φ(g).

The proof is provided in Appendix B. From Theorem 2, we can obtain the risk R̃Φ(g) without access195

to D®
c with the use of the proposed surrogate (4). Following the common practice, we can finally196

conduct ERM [54] that minimizes the unbiased estimator of RLΦ
c
(g), which is also that of R̃Φ(g)197

according to Theorem 2:198

R̂LΦ
c
(g) =

1

n

∑n

i=1
LΦ
c (g(xi), yi) (5)

After minimizing R̂LΦ
c
(g) and obtaining the empirically optimal ĝ, we can use it for predicting with199

the link function φ ◦ ĝ, where φ ◦ ĝ(x) = φ(ĝ(x)).200
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According to the unbiasedness of (3), it is promising that the induced prediction rule φ ◦ ĝ can201

approximate Chow’s rule (Definition 1). To quantify such approximation, there remains two questions:202

what is the relation between the minimization of empirical risk R̂LΦ
c
(g) and RLΦ

c
(g), and whether203

the minimization of RLΦ
c
(g) yields that of R01c(φ ◦ g). We will answer the two problems in Section204

4.2 and Section 5, respectively.205

4.2 Estimation Error Bound206

In Section 4.1, we proposed a family of surrogates that can recover the surrogate risk on D®
c with207

only D and provided an ERM framework to learn the empirically optimal ĝ. Here we further justify208

the use of ERM by showing that the minimization of R̂LΦ
c

can also result in that of RLΦ
c

with the209

following estimation error bound.210

Theorem 3. For any δ ∈ (0, 1), suppose the model class of gy is Gy and g ∈ G, where Gy ⊂ X → R211

and G ⊂ X → RK+1 is composed of {Gy}K+1
y=1 . Φ(·, y) is ρ-Lipschitz continuous and is bounded212

by CΦ > 0. Assume that the identifiable condition holds, i.e., ming∈G RLΦ
c
(g) = R∗

LΦ
c

, then the213

following inequality holds with probability at least 1− δ:214

RLΦ
c
(ĝ)−R∗

LΦ
c
≤ 4

√
2(2− c)ρ

∑K+1

y=1
Rn(Gy) + (2− c)CΦ

√
2 log 2/δ

n
, (6)

where Rn(Gy) is the Rademacher complexity [5] w.r.t. Gy on the distribution with density p(x) that215

often decays in the rate of O( 1√
n
).216

We prove this conclusion in Appendix C. From the theorem above, we can learn that with the217

identifiable condition which is a common assumption with the use of complex models [4, 26, 33],218

RLΦ
c
(ĝ) converges to R∗

LΦ
c

in Op(1/
√
n), which is the optimal parametric convergence rate without219

additional assumptions [37]. According to Theorem 2, it is straightforward that R̃Φ(g)
P→R̃∗

Φ also220

holds. Nevertheless, the relation between the minimization of surrogate risk R̃Φ(g) and that of the221

target risk R̃01(φ ◦ g) is still unknown. According to Lemma 1, the minimization of R̃01(φ ◦ g) is222

equivalent to zero-one-c risk minimization, which is the goal of CwR. We answer this question in the223

next section by giving a necessary and sufficient condition for the ℓ01c-consistency for LΦ
c .224

5 Theoretical Analysis225

In this section, we first point out the necessary and sufficient condition for LΦ
c to be ℓ01c-calibrated.226

Then we further specify the regret transfer bounds for a family of CPE-free surrogates [64], which227

has not been provided with theoretical analysis before.228

5.1 Necessary and Sufficient Condition for ℓ01c-Consistency229

Given the loss formulation (4), a natural idea is to construct surrogate LΦ
c with commonly used230

multi-class loss functions. However, the ℓ01c-consistency of such surrogates still remains unchecked.231

Here, we show that we can borrow the calibration analyses of multi-class surrogates and set Φ to any232

(K+1)-class ℓ01-calibrated surrogates according to the following necessary and sufficient condition:233

Theorem 4. LΦ
c is ℓ01c-consistent for any c ∈ [0, 1] if and only if Φ is an ℓ01-calibrated surrogate234

loss.235

The complete proof is shown in Appendix D and here we provide its sketch. The equivalence between236

CwR and multi-class classification on Dc shown in Lemmas 1, 1, and Theorem 2 directly yields the237

sufficiency of this condition. Though the equivalent classification problem is limited on Dc, p̃(y|x)238

can be any valid class-posterior probabilities due to the arbitrariness of c and thus the calibration of Φ239

is necessary.240

As a result, we can use any Φ in an off-the-shelf manner, i.e., to the consistency of different LΦ
c , we241

only have to check if Φ is ℓ01-calibrated, which has been studied thoroughly [7, 53, 46], instead of242
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tedious case-based discussions. Furthermore, there is also no need for the consideration of any other243

potential Φ since ℓ01-calibration is also necessary.244

5.2 Calibration Result for Generalized Cross Entropy Loss245

Given the necessary and sufficient condition for ℓ01c-consistency, we can construct LΦ
c with any246

ℓ01-calibrated surrogates. However, it has been shown in Charoenphakdee et al. [8] that it can lead247

to a model that rejects more data than necessary if the cross entropy (CE) loss is used as Φ, which248

is a popular choice as a surrogate. Another common surrogate is the mean absolute error (MAE).249

Though it can avoid CPE and only focus on the crucial class with the maximum posterior possibility,250

it usually takes more training epochs before convergence [64], which can be costly in practical use.251

Here, we consider the generalized cross entropy (GCE) loss [64] that can take the advantages of the252

CE loss and MAE, which is defined as below:253

Definition 6. (Generalized cross entropy losses) For any γ ∈ (0, 1], the GCE loss is defined as below:

Φγ(g(x), y) = (1− S(g)γy)/γ,

where S(·) is the softmax-transformation.254

It can be seen that the loss formulation is equivalent to MAE if γ = 1 and it is also reported in Zhang255

and Sabuncu [64] that the GCE loss can approximate the CE loss if γ → 0. Though the GCE loss has256

proved to be effective in practical use, to the best of our knowledge, its calibration results remain257

unknown, and thus it is unsafe directly combining it with LΦ
c .258

Theorem 5. The GCE loss Φγ is ℓ01-calibrated for any γ ∈ (0, 1]. For the optimal model259

g∗, S(g∗)y = η
1

1−γ
y /

∑K
y′=1 η

1
1−γ

y′ for all the x ∈ X almost surely if γ ∈ (0, 1). If γ = 1,260

S(g∗)argmaxyηy
= 1.261

The proof can be found in Appendix E. After verifying the calibration result of the GCE loss,262

we can combine it with the loss formulation LΦ
c and obtain an ℓ01c-consistent surrogate. We will263

experimentally demonstrate its effectiveness in the next section.264

6 Experiments265

In this section, we provide the experiment results of CwR with deep models, which are evaluated by266

the zero-one-c loss following the common practice [43, 8]. We also show the misclassification rate267

of the accepted data and the ratio of the rejected data. Details of the setup and the experiments for268

instance-dependent cost can be found in Appendix F and G, respectively.269

Datasets and Models. In the experiments, we evaluate the proposed methods and baselines on three270

widely-used benchmarks Fashion-MNIST [58], SVHN [42], CIFAR-10 [30] with cost c selected from271

{0.05, 0.06, 0.07, 0.08, 0.09, 0.10} for Fashion-MNIST and {0.05, 0.10, 0.15, 0.20, 0.25, 0.30} the272

other two. We conduct data augmentation for CIFAR-10 and use the original datasets of Fashion-273

MNIST and SVHN in the experiments. For Fashion-MNIST, we use a CNN defined in Charoen-274

phakdee et al. [8], and ResNet-18 and ResNet-34 [25] are used for SVHN and CIFAR-10, respectively.275

Baselines. We compare our method with state-of-the-art methods in CwR, including confidence-276

based cross entropy loss (CE) [43], learning to defer (DEFER) [40], and cost-sensitive learning-based277

method with sigmoid loss (CS) [8], in which DEFER is a special case of our method that use cross278

entropy loss as Φ. For CE, we also conduct the temperature scaling [24] to alleviate overconfidence .279

For the proposed method, we use GCE with default parameter γ = 0.7 as suggested in Zhang and280

Sabuncu [64] and pairwise-sigmoid (Sigmoid) loss [63] to construct the surrogate LΦ
c .281

We implemented all the methods by Pytorch [44], and conducted all the experiments on NVIDIA282

GeForce 3090 GPUs.283
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Table 2: The mean and standard error of the zero-one-c losses (rescaled to 0-100), rejection ratio, and missclas-
sification rates of the accepted data for 5 trails. The best and comparable methods based on the paired t-test at
the significance level 5% are highlighted in boldface.

Method Cost CE CS DEFER GCE Sigmoid

01c Rej 01 01c Rej 01 01c Rej 01 01c Rej 01 01c Rej 01

FMNIST

0.05 2.30 25.17 1.39 2.93 34.95 1.81 3.79 50.461 2.58 3.22 50.47 1.39 2.23 30.98 0.99
(0.07) (3.17) (0.11) (0.25) (1.94) (0.48) (0.28) (2.51) (0.46) (0.07) (2.49) (0.30) (0.01) (0.62) (0.05)

0.06 2.58 22.92 1.56 3.37 33.13 2.07 4.63 56.45 2.84 3.78 50.46 1.53 2.62 26.76 1.37
(0.07) (1.45) (0.09) (0.15) (1.27) (0.28) (0.10) (3.69) (0.42) (0.17) (1.24) (0.30) (0.08) (3.37) (0.21)

0.07 2.73 21.17 1.58 3.45 35.77 1.47 5.18 56.46 2.86 4.23 48.05 1.66 2.94 29.87 1.21
(0.14) (2.23) (0.31) (0.17) (2.62) (0.04) (0.47) (6.85) (0.41) (0.21) (5.24) (0.25) (0.07) (0.85) (0.17)

0.08 3.12 20.71 1.85 4.13 33.68 2.17 5.86 54.08 3.36 4.50 45.66 1.55 3.14 26.10 1.43
(0.11) (1.68) (0.07) (0.36) (0.32) (0.52) (0.30) (3.47) (0.29) (0.06) (2.36) (0.25) (0.17) (0.23) (0.25)

0.09 3.55 23.64 1.86 4.20 31.90 1.96 6.31 54.62 3.09 4.95 44.05 1.77 3.50 23.71 1.79
(0.21) (1.82) (0.18) (0.21) (1.74) (0.15) (0.40) (4.33) (0.49) (0.06) (1.74) (0.23) (0.05) (.28) (0.18)

0.10 3.59 18.32 2.15 4.45 28.96 2.18 6.72 52.69 3.08 5.06 39.01 1.89 3.73 23.96 1.76
(0.16) (1.56) (0.32) (0.20) (0.13) (0.41) (0.07) (0.74) (0.18) (0.23) (4.87) (0.26) (0.05) (1.90) (0.20)

SVHN

0.05 3.33 14.37 3.05 4.42 12.81 4.33 4.19 33.05 3.80 2.68 19.79 2.10 2.70 29.56 1.73
(0.14) (0.94) (0.13) (0.13) (0.14) (0.12) (0.29) (1.59) (0.37) (0.17) (0.72) (0.24) (0.14) (1.16) (0.17)

0.10 4.66 10.91 4.01 4.48 12.85 3.67 5.55 30.72 3.58 4.13 14.83 3.10 4.13 19.16 2.74
(0.20) (0.57) (0.21) (0.14) (0.42) (0.11) (0.56) (2.64) (0.52) (0.11) (0.54) (0.10) (0.39) (1.94) (0.43)

0.15 5.40 8.52 4.50 5.14 13.21 3.64 6.37 21.19 4.05 4.66 11.47 3.31 4.83 18.38 2.54
(0.09) (0.15) (0.07) (0.10) (0.62) (0.19) (0.21) (0.94) (0.25) (0.06) (0.41) (0.07) (0.44) (1.37) (0.61)

0.20 6.16 7.74 4.99 5.51 12.78 3.19 5.99 12.33 4.02 5.44 10.02 3.82 6.39 15.86 3.82
(0.13) (0.26) (0.09) (0.20) (1.03) (0.24) (0.17) (0.51) (0.16) (0.04) (0.25) (0.03) (0.45) (0.72) (0.48)

0.25 7.08 6.51 5.83 6.77 12.96 4.06 6.69 9.18 4.33 5.75 8.64 3.93 6.74 13.79 3.82
(0.32) (1.06) (0.36) (0.16) (0.97) (0.18) (0.16) (0.35) (0.16) (0.14) (0.20) (0.12) (0.13) (0.33) (0.14)

0.30 7.12 5.31 5.83 7.26 13.21 3.80 7.07 12.35 4.55 6.30 8.72 4.04 7.69 10.79 5.00
(0.16) (0.36) (0.18) (0.33) (1.20) (0.41) (0.31) (2.31) (0.34) (0.09) (0.11) (0.09) (0.22) (0.76) (0.13)

CIFAR-10

0.05 4.43 29.93 4.18 6.59 20.20 7.00 4.62 44.97 4.30 3.80 34.52 3.16 3.67 42.69 2.63
(0.23) (1.85) (0.33) (0.27) (0.51) (0.35) (0.47) (5.24) (0.88) (0.20) (2.77) (0.35) (0.03) (8.74) (0.49)

0.10 7.13 21.13 6.35 7.68 20.31 7.08 6.56 26.21 5.34 5.84 25.47 4.41 6.11 31.66 4.30
(0.11) (0.81) (0.18) (0.32) (0.66) (0.42) (0.26) (1.12) (0.39) (0.12) (0.98) (0.15) (0.13) (2.17) (0.30)

0.15 9.03 7.76 7.74 8.35 21.83 6.49 8.39 20.39 6.69 7.56 20.43 5.65 8.18 23.39 6.10
(0.32) (0.39) (0.37) (0.29) (0.92) (0.45) (0.19) (1.59) (0.35) (0.14) (0.60) (0.23) (0.10) (0.82) (0.18)

0.20 10.45 14.53 8.82 9.32 21.86 6.33 9.65 17.16 7.50 9.09 18.45 6.62 9.69 19.54 7.20
(0.29) (0.47) (0.38) (0.21) (0.46) (0.33) (0.14) (1.04) (0.11) (0.14) (1.93) (0.42) (0.15) (1.55) (0.07)

0.25 11.64 11.20 9.96 10.46 22.02 6.35 10.85 14.22 8.50 10.31 15.39 7.64 10.96 14.99 8.48
(0.26) (0.30) (0.32) (0.24) (0.40) (0.35) (0.08) (1.35) (0.30) (0.23) (1.47) (0.38) (0.11) (1.71) (0.40)

0.30 12.20 10.02 10.89 11.43 22.23 6.13 11.90 11.48 9.55 11.23 12.52 8.55 12.14 11.08 9.91
(0.18) (0.53) (0.15) (0.23) (0.81) (0.24) (0.17) (0.75) (0.31) (0.16) (0.122) (0.14) (0.12) (0.60) (0.25)

Experimental Results. As can be seen from the experimental results reported in Table 2, our284

proposed method (i.e., either GCE or Sigmoid) significantly outperforms other compared methods285

in most cases. Obviously, for all the datasets and cost c, our GCE method outperforms the baseline286

DEFER method, which indicates that CwR cannot be simply solved by the methods used for learning287

to defer. It can be also seen that confidence-based CE is only comparable to the proposed method288

on FMNIST with a simple CNN. When complex models are used, the effect of overconfidence is289

inevitable even with the use of temperature scaling, which can be induced from the fact that CE often290

rejects less data than GCE on SVHN and CIFAR-10. Though CS is comparable to GCE on CIFAR-10291

when the rejection cost is high, its performance degrades drastically when the classification cost292

decreases, which shows that it is not the best choice in highly error-critical tasks. When ResNet-18293

and ResNet-34 are used on SVHN and CIFAR-10 respectively, our GCE method outperforms or294

is comparable to all the baselines, which shows that GCE is more stable on complex models. Our295

proposed Sigmoid method performs better than most baselines and is comparable to CE with the296

use of a simple CNN model, which aligns with the existing observations that pairwise losses are297

often effective with simple models [55, 14]. These results show that our method can benefit from the298

flexibility of the choices of loss functions.299

7 Conclusion300

In this paper, we studied the problem of classification with rejection, which can refrain from making301

a prediction to avoid critical misclassification. We derived a novel formulation for CwR that can302

be equipped with arbitrary loss functions while maintaining the theoretical guarantees, making303

them highly adaptive to the dataset in practical use. First, we showed the equivalence between304

K-class CwR and a (K+1)-class classification problem, and proposed an empirical risk minimization305

formulation to solve this problem with an estimation error bound. Then, we pointed out a necessary306

and sufficient condition for the learning consistency of the surrogates constructed on our proposed307

formulation equipped with any classification-calibrated multi-class losses. Finally, experimental308

results demonstrated the effectiveness of our proposed method.309
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(a) Did you include the code, data, and instructions needed to reproduce the main ex-472

perimental results (either in the supplemental material or as a URL)? [Yes] See the473

supplemental material.474

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they475

were chosen)? [Yes] See Section 6 and Appendix.476

(c) Did you report error bars (e.g., with respect to the random seed after running experi-477

ments multiple times)? [Yes] See Table 2.478

(d) Did you include the total amount of compute and the type of resources used (e.g., type479

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 6.480

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...481

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.482

(b) Did you mention the license of the assets? [N/A] The used datasets are open bench-483

marks.484

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]485

Please refer to the supplemental materials.486

(d) Did you discuss whether and how consent was obtained from people whose data you’re487

using/curating? [N/A]488

(e) Did you discuss whether the data you are using/curating contains personally identifiable489

information or offensive content? [N/A]490

5. If you used crowdsourcing or conducted research with human subjects...491

(a) Did you include the full text of instructions given to participants and screenshots, if492

applicable? [N/A]493

(b) Did you describe any potential participant risks, with links to Institutional Review494

Board (IRB) approvals, if applicable? [N/A]495

(c) Did you include the estimated hourly wage paid to participants and the total amount496

spent on participant compensation? [N/A]497
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A Proof of Theorem 1 and Corollary 1498

We begin with the proof of Corollary 1 and show that Theorem 1 is its special case.499

Proof. First of all, we prove that the Bayes optimal solution on p̃(x, ỹ) coincide with the Chow’s
rule of p(x, y) with cost c. According to the optimality condition of multi-class classification, the
optimal classifier f∗(x) on p̃(x, ỹ) should fulfill the following condition almost surely:

f∗(x) = argmaxỹ p̃(ỹ|x), ỹ ∈ {1, · · · ,K,®}.
According to the definition of p̃, we can further rewrite it as:

f∗(x) =

{
®, maxỹ∈{1,··· ,K}

p(ỹ|x)
2−c(x) ≤

1−c(x)
2−c(x) ,

argmaxỹ∈{1,··· ,K}
p(ỹ|x)
2−c(x) , else,

which coincides with the Chow’s rule. Then we have the following conclusions:500

R̄01(f) = Ep̃(x,ỹ)[(2− c(x))ℓ01(f(x), ỹ)]

=

∫
x

K∑
ỹ=1

(2− c(x))ℓ01(f(x), ỹ)
p(x, y)

2− c(x)
dx+

∫
x

(2− c(x))ℓ01(f(x),K + 1)
p(x)

2− c(x)
dx

=

∫
x

K∑
ỹ=1

(2− c(x))ℓ01(f(x), ỹ)
p(x, y)

2− c(x)
dx+

∫
x

(2− c(x))ℓ01(f(x),®)
(1− c(x))p(x)

2− c(x)
dx

=

∫
x

K∑
ỹ=1

ℓ01(f(x), ỹ)p(x, y)dx+

∫
x

ℓ01(f(x),®)(1− c(x))p(x)dx

Suppose C(f(x)) =
∑K

ỹ=1 ℓ01(f(x), ỹ)p(y|x) + ℓ01(f(x),®)(1− c(x)) is the inner risk and f∗501

is the Chow’s rule, we have that502

• If f∗(x) = ® and f(x) ̸= f∗(x):

C(f(x))− C(f∗(x)) = 1− c(x)− p(f(x)|x).

• If f∗(x) ∈ {1, · · · ,K} and f(x) = ®:

C(f(x))− C(f∗(x)) = p(f∗(x)|x).

• If f∗(x), f(x) ∈ {1, · · · ,K} and f(x) ̸= f∗(x):

C(f(x))− C(f∗(x)) = p(f∗(x)|x))− p(f(x)|x).

These conclusion shows that

C(f(x))− C(f∗(x)) = Ep(y|x)[ℓ01c(f(x), y)]− Ep(y|x)[ℓ01c(f
∗(x), y)].

We can conclude the proof by taking the expectation over p(x) on both sides of the equation.503

It can be seen that when c(x) is constant, we can divide each side of Corollary 1 to get the proof of504

Theorem 1.505

B Proof of Theorem 2506

Proof.

RLΦ
c
(g) = Ep(x,y)[L

Φ
c (g(x), y)]

= Ep(x,y)[Φ(g(x), y)] + (1− c)Ep(x)[Φ(g(x),K + 1)]

= (2− c)R̃Φ(g)

507
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C Proof of Theorem 3508

We first give the definition of Rademacher complexity:509

Definition 7. (Rademacher complexity [5]) Let Z1, · · · , Zn be n i.i.d. random variables drawn from510

a probability distribution µ and F = {f : Z → R} be a class of measurable functions. Then the511

expected Rademacher complexity of function class F is given as follow:512

Rn(F) = EZ1,··· ,Zn∼µEσ

[
supf∈F

1

n

n∑
i=1

σif(Zi)

]
, (7)

where σ1, · · · , σn are the Rademacher variables that take the value from {−1,+1} uniformly.513

Then we can begin proving Theorem 3.514

Proof. According to the conditions in Theorem 3, we can learn that LΦ
c is (2 − c)ρ-Lipschitz515

continuous and is bounded by (2− c)CΦ. By applying the McDiarmid’s inequality [36], it is routine516

[39] to show that the following inequalities holds with probability at least 1− δ
2 , respectively:517

sup
g∈G

(
RLΦ

c (g) − R̂LΦ
c (g)

)
≤ Ex1,··· ,xn

[
sup
g∈G

(
RLΦ

c (g) − R̂LΦ
c (g)

)]
+ (2− c)CΦ

√
log 2

δ

2n

sup
g∈G

(
R̂LΦ

c (g) −RLΦ
c (g)

)
≤ Ex1,··· ,xn

[
sup
g∈G

(
R̂LΦ

c (g) −RLΦ
c (g)

)]
+ (2− c)CΦ

√
log 2

δ

2n

By applying Talagrand’s contraction lemma [35], we can learn that:518

Ex1,··· ,xn

[
sup
g∈G

(
RLΦ

c (g) − R̂LΦ
c (g)

)]
≤

√
2(2− c)ρ

K+1∑
y=1

Rn(Gy)

and this conclusion also holds for another direction. Plugging this conclusion into the former519

inequalities and using the union bound, we can learn:520

sup
g∈G

∣∣∣RLΦ
c (g) − R̂LΦ

c (g)

∣∣∣ ≤ √
2(2− c)ρ

K+1∑
y=1

Rn(Gy) + (2− c)CΦ

√
log 2

δ

2n

According to the definition of empirical risk minimization and identifiable condition, we can get the521

following conclusion, where g∗ is the optimal solution among all the measurable functions:522

RLΦ
c
(ĝ)−R∗

LΦ
c
=
(
RLΦ

c
(ĝ)− R̂LΦ

c
(ĝ)
)
+
(
R̂LΦ

c
(ĝ)− R̂LΦ

c
(g∗)

)
+
(
R̂LΦ

c
(g∗)−R∗

LΦ
c

)
≤
(
RLΦ

c
(ĝ)− R̂LΦ

c
(ĝ)
)
+
(
R̂LΦ

c
(g∗)−R∗

LΦ
c

)
≤ 2 sup

g∈G

∣∣∣RLΦ
c
(g)− R̂LΦ

c
(g)
∣∣∣

which concludes the proof.523

D Proof of Theorem 4524

Proof. According to Theorem 1, Theorem 2, and Theorem 3 in Ramaswamy and Agarwal [46], we525

can immediately learn the sufficiency of this condition.526

We complete the proof of the necessity of the calibration of Φ by contradiction. Suppose there are
some u ∈ ∆K+1 that:

inf
u∈RK ,u̸∈argminu pTL01(u)

pTΦ(u) = inf
u∈RK

pTΦ(u).
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It is easy to learn that any re-permutation of u also fulfill the equation above, and we define the527

collection of these vectors as U . Then we can construct a distribution over X × {1, · · · ,K + 1}528

whose posterior possibility is u′ ∈ U for all x, on which Φ is not ℓ01−consistent. However, in our529

scenario, we only focus on a special distribution with density p̃(x, ỹ) over X × {1, · · · ,K + 1},530

where p̃(K+1|x) = 1−c
2−c and p̃(ỹ|x) = p(ỹ|x)/(2−c) if ỹ ̸= K+1. A natural idea is that according531

to the particularity of p̃, there may not be overlap between U and all the potential {p̃(ỹ|x)}K+1
ỹ=1 .532

However, according to the arbitrariness of c, this idea is not true, i.e., there always exists a distribution533

{p(y|x)}Ky=1 and c that {p̃(ỹ|x)}K+1
ỹ=1 ∈ U . Then we can easily define a distribution based on534

{p̃(ỹ|x)}K+1
ỹ=1 , on which Φ is not ℓ01−consistent. According to the equivalence shown in Theorem535

1 and 2, this observation indicates that LΦ
c is not ℓ01c−consistent w.r.t. to this distribution, which536

shows the necessity of the ℓ01−calibration of Φ.537

538

E Proof of Theorem 5539

Proof. According to [59], we can directly get the formulation of the optimal solution of GCE. Based540

on this formulation, we prove the classification-calibration of GCE constructively by giving an regret541

transfer bound.542

First of all, we show that the excess error of GCE loss for any x is a reweighted version of the Tsallis543

relative entropy [22, 48] in actual. Denote by S(g∗)y = q∗
y , S(g)y = qy for any g, and p(y|x) = ηy .544

We substitute γ with r in the proof for simplicity:545

Ex(q,x) =

y∑
y=1

ηy
(1− qr

y)

r
−

y∑
y=1

ηy
(1− q∗r

y )

r

=

∑K
y=1 ηy(q

∗r
y − qr

y)

r

=

(
K∑

y=1

η
1

1−r
y

)1−r
(
1−

∑K
y=1 q

∗(1−r)
y qry

)
r

It can be seen that the second term of the last equation is the Tsallis relative entropy between discrete546

possibilities q∗ and q. According to the Corollary 9 of [22] and (4.13) of [48], we can lower bound547

the excess error with the total variation distance between q∗ and q and get a Pinsker’s type inequality:548

Ex(q,x) ≥

(
K∑

y=1

η
1

1−r
y

)1−r

1− r

2
∥q∗ − q∥21

Then we have to connect the r.h.s. of the inequality to the excess error w.r.t. 0-1 loss. When549

argmaxy qy(x) ̸= argmaxy ηy , denote by argmaxy qy(x) = pred and argmaxy ηy = max:550

∥q∗ − q∥1 =

K∑
y=1

|q∗y − qy|

≥ |q∗max − qmax|+ |q∗pred − qpred|
≥ |q∗max − q∗pred + qpred − qmax|
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According to the formulation of the optimal solution of GCE, we can learn that q∗max ≥ q∗pred. Since551

argmaxy qy(x) ̸= argmaxy ηy , we can learn that qpred ≥ qmax. Then we can further learn that:552

∥q∗ − q∥1 ≥ |q∗max − q∗pred|

=

(
K∑

y=1

η
1

1−r
y

)−1

|η
1

1−r
max − η

1
1−r

pred|

=

(
K∑

y=1

η
1

1−r
y

)−1

(η
1

1−r
max − η

1
1−r

pred)

=

(
K∑

y=1

η
1

1−r
y

)−1

(ηmax ∗ η
r

1−r
max − ηpred ∗ η

r
1−r

pred)

≥

(
K∑

y=1

η
1

1−r
y

)−1

(ηmax ∗ η
r

1−r
max − ηpred ∗ η

r
1−r
max)

=

(
K∑

y=1

η
1

1−r
y

)−1

η
r

1−r
max(ηmax − ηpred)

Then we can learn that:553

Ex(q,x) ≥

(
K∑

y=1

η
1

1−r
y

)−1−r

η
2r

1−r
max ∗ 1− r

2
(ηmax − ηpred)

2

≥ 1− r

2K
2r

1−r+r+r2
(ηmax − ηpred)

2

Then we have the following regret transfer bound:

R01(argmax
y

gy)−R∗
01 ≤

√
C(RG(g)−R∗

G),

where C = 2K
2r

1−r
+r+r2

1−r , RG is the expected version of GCE loss, and R∗
G and R∗

01 are the opti-554

mal value of the expected version of GCE loss and 0-1 loss, respectively. From this bound, we555

constructively prove the classification-calibration of GCE loss with r ∈ (0, 1).556

It is noticeable that the bound does not hold for r = 1, e.g., the case of MAE loss, and the regret557

transfer bound becomes less compact when r increases. We prove the classification-calibration of558

MAE loss by showing its regret transfer bound.559

Corollary 2. Suppose the expected version of MAE loss is RM (g) and its minimal value is R∗
M .

Then we have:
R01(argmax

y
gy)−R∗

01 ≤ K(RM (g)−R∗
M ).

Proof. Given the formulation of the optimal solution q∗ of expected MAE loss in Theorem 5, for any560

x, the excess error can be written as:561

Ex(q,x) =

K∑
y=1

ηy(1− qy)−
K∑

y=1

ηy(1− q∗y)

=

K∑
y=1

ηy(q
∗
y − qy)

= ηmax −
K∑

y=1

ηyqy
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When When argmaxy qy(x) ̸= argmaxy ηy:562

ηmax −
K∑

y=1

ηyqy = ηmax − ηpredqpred −
K∑

y ̸=pred

ηyqy

≥ ηmax − ηpredqpred − ηmax(1− qpred)

= qpred(ηmax − ηpred)

≥ 1

K
(ηmax − ηpred),

which concludes the proof by taking the expectation on both sides.563

Combine the conclusions above and we can conclude the proof. Though the bound for GCE becomes564

less tight when r increases, the MAE loss has a better regret transfer bound, which indicates that565

the regret transfer bound of GCE for r ∈ (0, 1) may not be good enough. A potential reason is that566

[22, 48] considered the general case of Tsallis relative entropy while we only need the case that q is a567

probability distribution. It is promising to further tighten this bound by modifying the conclusions in568

[22, 48] and limiting q to a K − 1-dimensional probability simplex.569

F Details of the Experiment Setup570

F.1 Detailed Information of Benchmark Datasets571

In the experiments, we used 3 widely-used benchmark datasets. Here, we report the sources of these572

datasets and the way we split them.573

• Fashion-MNIST [58]. It is a 10-class dataset of fashion items. Each instance is574

a 28*28 grayscale image. Source: https://github.com/zalandoresearch/575

fashion-mnist.576

• SVHN [42] It is a 10-class dataset for 10 different digits and each instance is a577

32*32*3 colored image in RGB format. Source: http://ufldl.stanford.edu/578

housenumbers/.579

• CIFAR-10 [30]. It is a 10-class dataset for 10 different objects and each instance is a580

32*32*3 colored image in RGB format. Source: https://www.cs.toronto.edu/581

~kriz/cifar.html.582

For Fashion-MNIST and SVHN, we trained models on the whole training dataset. For CIFAR-10,583

we splited 10% of the training dataset as the validation set and conducted random crop and flips584

for data augmentation. The cost c is less than 0.5 as suggested in [47] and further decreased on585

Fashion-MNIST since it is a less difficult dataset.586

F.2 Detailed Information of the Models and Optimization Algorithm587

For Fashion-MNIST, we used the model defined in [8] for the experiments. For SVHN and CIFAR-588

10, ResNet-18 and ResNet-34 is used, respectively. For the cost-sensitive method [8], we use589

batch normalization [27] at the output layer as suggested in [8] since it fails to work without this590

modification.591

Adam with default momentum was used for optimization in this paper. For Fashion-MNIST, the592

epoch number, batch size, learning rate, and weight decay are set to 20, 256, 1e-3, and 1e-4. For593

SVHN, the epoch number, batch size, learning rate, and weight decay are set to 20, 1024, 1e-3, and594

1e-4. For CIFAR-10, the epoch number, batch size, learning rate, and weight decay are set to or595

selected from 200, 1024, {1e-3, 2e-3, 3e-3}, and 1e-4. For Fashion-MNIST and SVHN, we use the596

model after the 20th epoch for performance evaluation. For CIFAR-10, we report the performance597

of the model with the best performance on the validation dataset. Temperature scaling is further598

conducted for CE on CIFAR-10.599

19

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


G Details of Instance-dependent Rejection Cost600

In practical applications, it can be beneficial letting the rejection cost c(x) vary among different601

samples. For example, when constructing a system to automatically prescribe for users, a wrong602

prescription can be fatal for users of advanced ages or with underlying diseases. To prevent such603

wrong prescriptions, the cost for this type of users can be decreased to encourage rejection. However,604

it is not suitable encouraging rejection for all the users, which makes the system meaningless. An605

acceptable choice is to increase the cost for rejection instead for users of low risk.606

In this appendix, we expand the Theorem 2 and propose a surrogate for instance dependent cost based607

on Corollary 1, whose estimation error bound and calibration analysis can be derived almost symmet-608

rically thanks to the equivalence shown in Corollary 3. Then we further evaluate its performance on609

SVHN dataset.610

G.1 Expansion of Theorem 2611

Theorem 2 tells the equivalence between surrogate risk minimization of LΦ
c on p(x, y) and surrogate612

risk minimization of Φ on p̃(x, ỹ). Here we expand it to the case of instance-dependent cost.613

Given the cost function c(x) and any function Φ(·) : RK+1 × {1, · · · ,K + 1} → R+:

LΦ
c(x)(u, y) = (Φ(u, y) + (1− c(x))Φ(u,K + 1))/(2− c(x)).

Then we have the following conclusion:614

Corollary 3. For any g : X → RK+1 and RLΦ
c(x)

(g) = Ep(x,y)[L
Φ
c(x)(g(x), y)]:

RLΦ
c(x)

(g) = R̃Φ(g)

Proof.

RLΦ
c(x)

(g) = Ep(x,y)[L
Φ
c(x)(g(x), y)]

= Ep(x,y)[(Φ(g(x), y) + (1− c(x))Φ(g(x),K + 1))/(2− c(x))]

=

∫
x

K∑
y=1

Φ(g(x), y)
p(x, y)

2− c(x)
dx+

∫
x

(1− c(x))p(x)

2− c(x)
Φ(g(x),K + 1)dx

= R̃Φ(g)

615

The derivation of its estimation error bound is similar to that of Theorem 3 by modifying the upper616

bound and Lipschitz constant, and the necessity and sufficiency of the ℓ01-calibration of Φ can also617

be proved by utilizing the arbitrariness of p̃(x, y) as in Appendix D.618

G.2 Experiments on SVHN619

In this section, we compare our proposed surrogate LΦ
c(x) with CE and DEFER on SVHN. The620

cost-sensitive learning-based method [8] is not compared since it cannot tackle the case of instance-621

dependent cost.622

In the experiments, we use SVHN [42] to demonstrate the effectiveness of LΦ
c(x). To generate623

instance-dependent costs, we split 10% of the training dataset and manually corrupt it into to a624

binary dataset by aggregating the 10 classes into [‘0’, ‘2’, ‘3’, ‘5’, ‘6’, ‘8’, ‘9’] and [‘1’, ‘4’, ‘7’].625

We train a binary classifier with on the corrupted dataset with 10 epochs. Then we further use the626

obtained classifier on training and testing set to split them into 2 parts. For any x that is classified as627

[‘0’, ‘2’, ‘3’, ‘5’, ‘6’, ‘8’, ‘9’], we set c(x) = c1 and c2 otherwise. In the experiments, Adam with628

default momentum is used with learning rate, batch size and weight decay set to 1e-3, 1024, and 1e-4,629

respectively. The model used is ResNet-18.630
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Table 3: The mean and standard error of the zero-one-c losses (rescaled to 0-100), rejection ratio, and missclas-
sification rates of the accepted data for 5 trails. The best and comparable methods based on the paired t-test at
the significance level 5% are highlighted in boldface.

Method (c1, c2) CE DEFER GCE

01c Rej 01 01c Rej 01 01c Rej 01

SVHN

(0.50, 0.10) 8.03 4.46 7.60 8.00 9.20 5.07 7.20 6.73 5.13
(0.16) (0.54) (0.01) (0.30) (0.72) (0.25) (0.17) (6.73) (5.13)

(0.45, 0.15) 7.80 4.36 7.03 9.10 9.93 5.07 6.93 7.00 4.70
(0.26) (0.31) (0.23) (0.46) (0.41) (0.42) (0.31) (0.35) (0.26)

(0.40, 0.20) 7.70 4.50 6.83 7.80 11.13 5.00 7.03 7.93 4.80
(0.10) (0.50) (0.25) (0.26) (1.27) (0.44) (0.21) (0.55) (0.17)

(0.35, 0.25) 7.76 4.90 6.67 7.70 11.93 4.80 6.83 8.43 4.63
(0.12) (0.20) (0.15) (0.26) (0.45) (0.10) (0.20) (0.31) (0.15)

The experimental results are reported in the table above. It can be seen that in the scenario of631

instance-dependent cost, the prop osed surrogate with GCE loss still outperforms baseline methods,632

which aligns with the observations in Section 6.633

H Limitations and Potential Negative Social Impacts634

Limitations: This framework is used for multi-class classification with rejection, while there are635

also other scenarios for learning with rejection, e.g., AUC optimization with rejection [51]. We636

believe that extensions to CwR with complex evaluation is a promising future direction.637

Potential Negative Social Impacts: Though classification with rejection can be useful in risk-638

critical missions, it can lead to inefficient services once abused, i.e., used in risk-insensitive missions.639

This is also the potential negative social impact of all the methods for CwR.640
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