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A Proof of Theorem 1

First, we prove that the optimal model f⋆ learned from fully
labeled data (i.e., f⋆ = argminR(f)) is also the optimal
model for Rmin(f) = Ep(x,S)[ℓmin(f(x), S)] as follows.

By substituting the f⋆ into Rmin(f), we obtain:

Rmin(f
⋆)

= Ep(x,S)[ℓmin(f
⋆(x), S)]

=

∫
X

∫
S
ℓmin(f

⋆(x), S)p(S | x)p(x)dSdx

=

∫
X

∫
S

∫
Y
ℓmin(f

⋆(x), S)p(S, y | x)p(x)dydSdx

=

∫
X

∫
S

∫
Y
miny′∈S ℓ(f⋆(x), y′)p(S, y | x)p(x)dydSdx

=

∫
X

∫
Y
ℓ(f⋆(x), y)

∫
S
p(S | y,x)p(y | x)p(x)dSdydx

=

∫
X

∫
Y
ℓ(f⋆(x), y)p(x, y)dydx

= R(f⋆) = 0,

which indicates that f⋆ is the optimal model for Rmin(f).
On the other hand, we prove that f⋆ is the sole optimal

model for Rmin(f) by contradiction. Specifically, we as-
sume that there is at least one other model g that makes
Rmin(g) = 0 and predicts a label yg ̸= y for at least one
instance x. Therefore, for any S containing y, we have

miny′∈S ℓ(g(x), y′) = ℓ(g(x), yg) = 0.

The above equality implies that yg is always included in
the candidate label set of x (co-occurring with the true label
y), and in this case, the ambiguity degree is 1. This contra-
dicts the basic PLR assumption that the ambiguity degree
should be less than 1. Therefore, there is one, and only one
minimizer of Rmin, which is the same as the minimizer f⋆

learned from fully labeled data. The proof is completed.
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B Proof of Theorem 2
Let us introduce the following notations:

d = Pdim({x 7→ ℓ(f(x), y) | f ∈ F}),
d′ = Pdim({x 7→ min

y∈S
ℓ(f(x), y) | f ∈ F}),

where Pdim(F) denotes the pseudo-dimension of the func-
tional space F . It is worth noting that we may represent d′
by d with some derivations, while for simplicity and conve-
nience, we directly formulate the expression of d′.

From the assumptions in Theorem 2, using the discussion
in Theorem 10.6 of Mohri, Rostamizadeh, and Talwalkar
(2012), with probability 1− δ for all f ∈ F ,∣∣∣∣∣Ep(x,S)[ℓmin(x, S)]−

n∑
i=1

ℓmin(xi, Si)

∣∣∣∣∣
≤ M

√
2d′ log ne

d′

n
+M

√
log 2

δ

2n
.

Hence we can know that
∣∣∣Rmin(f)− R̂min(f)

∣∣∣ converges in

the order of O(1/
√
n) for all f ∈ F .

Then, we have the following derivations:

Rmin(f̂min)−Rmin(f
⋆)

≤ Rmin(f̂min)− R̂min(f̂min) + R̂min(f̂min)− R̂min(f
⋆)

+ R̂min(f
⋆)−Rmin(f

⋆)

≤ Rmin(f̂min)− R̂min(f̂min) + R̂min(f
⋆)−Rmin(f

⋆)

≤
∣∣∣Rmin(f̂min)− R̂min(f̂min)

∣∣∣
+

∣∣∣R̂min(f
⋆)−Rmin(f

⋆)
∣∣∣ ,

where the first inequality holds because R̂min(f̂min) −
R̂min(f

⋆) ≤ 0 since f̂min = argminf∈F R̂min(f). As both
the last two terms in the last line converges in the order
of O(1/

√
n), we can know that Rmin(f̂min) − Rmin(f

⋆)
converges in the order of O(1/

√
n). The proof is com-

pleted.



C Proof of Theorem 3
First, we prove that the optimal model f⋆ learned from fully
labeled data (i.e., f⋆ = argminR(f)) is also the optimal
model for Rwet(f) = Ep(x,S)[ℓwet(f(x), S)] as follows.

By substituting the f⋆ into Rwet(f), we obtain:

Rwet(f
⋆)

= Ep(x,S)[ℓwet(f
⋆(x), S)]

=

∫
X

∫
S
ℓwet(f

⋆(x), S)p(S | x)p(x)dSdx

=

∫
X

∫
S

∫
Y
ℓwet(f

⋆(x), S)p(S, y | x)p(x)dydSdx

=

∫
X

∫
S

∫
Y

∑
y′∈S

w(x, y′)ℓ(f⋆(x), y′)

· p(S, y | x)p(x)dydSdx

=

∫
X

∫
Y
ℓ(f⋆(x), y)

∫
S
p(S | y,x)p(y | x)p(x)dSdydx

=

∫
X

∫
Y
ℓ(f⋆(x), y)p(x, y)dydx

= R(f⋆) = 0,

where we used the equality
∑

y′∈S w(x, y′)ℓ(f⋆(x), y′) =

ℓ(f⋆(x), y). This is because when the true label y ∈ S
can make ℓ(f⋆(x), y) = 0, and thus the weighting function
would be w(x, y) = 1 and w(x, y′) = 0 for y′ ̸= y since
we try to minimize ℓwet.

On the other hand, we prove that f⋆ is the sole optimal
model for Rwet(f) by contradiction. Specifically, we as-
sume that there is at least one other model g that makes
Rwet(g) = 0 and predicts a label yg ̸= y for at least one
instance x. Therefore, for any S containing y we have∑

y′∈S
w(x, y′)ℓ(g(x), y′) = ℓ(g(x), yg) = 0.

The above equality implies that yg is always included in the
candidate label set of x (co-occurring with the true label
y), and in this case, the ambiguity degree is 1. This con-
tradicts the basic PLR assumption that the ambiguity degree
should be less than 1. Therefore, there is one, and only one
minimizer of Rwet, which is the same as the minimizer f⋆

learned from fully labeled data. The proof is completed.

D Proof of Theorem 4
Let us introduce the following notations:

d = Pdim({x 7→ ℓ(f(x), y) | f ∈ F}),

d̃ = Pdim({x 7→
∑
y∈S

w(x, y)ℓ(f(x), y) | f ∈ F}),

where Pdim(F) denotes the pseudo-dimension of the func-
tional space F and w(x, y) satisfy the basic conditions de-
scribed in the main text. It is worth noting that we may rep-
resent d̃ by d with some derivations, while for simplicity and
convenience, we directly formulate the expression of d̃.

From the assumptions in Theorem 2, using the discussion
in Theorem 10.6 of Mohri, Rostamizadeh, and Talwalkar
(2012), with probability 1− δ for all f ∈ F ,∣∣∣∣∣Ep(x,S)[ℓwet(x, S)]−

n∑
i=1

ℓwet(xi, Si)

∣∣∣∣∣
≤ M

√
2d̃ log ne

d̃

n
+M

√
log 2

δ

2n
.

Hence we can know that
∣∣∣Rwet(f)− R̂wet(f)

∣∣∣ converges in

the order of O(1/
√
n) for all f ∈ F .

Then, we have the following derivations:

Rwet(f̂wet)−Rwet(f
⋆)

≤ Rwet(f̂wet)− R̂wet(f̂wet) + R̂wet(f̂wet)− R̂wet(f
⋆)

+ R̂wet(f
⋆)−Rwet(f

⋆)

≤ Rwet(f̂wet)− R̂wet(f̂wet) + R̂wet(f
⋆)−Rwet(f

⋆)

≤
∣∣∣Rwet(f̂wet)− R̂wet(f̂wet)

∣∣∣
+

∣∣∣R̂wet(f
⋆)−Rwet(f

⋆)
∣∣∣ ,

where the first inequality holds because R̂wet(f̂wet) −
R̂wet(f

⋆) ≤ 0 since f̂wet = argminf∈F R̂wet(f). As both
the last two terms in the last line converges in the order
of O(1/

√
n), we can know that Rwet(f̂wet) − Rwet(f

⋆)
converges in the order of O(1/

√
n). The proof is com-

pleted.
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